
Tap-Tempo Clock, ATtiny861!
By Harald Sabro. Version 1, 05.04.2014!!
Overview
The idea with this micro controller is making it possible to build a single unit/box for your
pedalboard that allows you to set the tempo for all compatible effects at once. And there are a few
bells and whistles included as well.!!
Pin for pin description
!!!!!!!!!!!!!!!!!!!!!
PB0 - Half-speed clock output signal, 0V-5V. This is the chip’s main output signal and the one
you typically want to pass on to other compatible micro controllers. Leave disconnected if not
needed.!!
PB1 - Full-speed clock output signal, 0V-5V. If you want to interface with 3rd party units this is
probably the clock signal they’d expect (though mind the voltage). Leave disconnected if not
needed.!!
PB2 - [Tap input mode] LED indicating a tap tempo input is taking place. Pulled low when tempo
counting is actively taking place. Leave disconnected if not needed. Will stay high in clock input
mode.!!
PB3 - Unused. Leave disconnected.!!
PB4 - Crystal oscillator input. The chip expects an 8MHz crystal oscillator.!!
PB5 - Crystal oscillator input. The chip expects an 8MHz crystal oscillator.!!

PB6 - [Tap input mode] Averaging mode; average up to 10 tempo inputs to determine the best
output tempo. Pull low to enable, disconnect to disable. Ignored in clock input mode.!!
PB7 - Unused. Leave disconnected.!!
PA0 - [Tap input mode] Tap input switch. Tap once to enter tempo counting, then tap again to set
the tempo. Supports any tempo between 50ms and 10s. Leave disconnected if not needed.
Ignored in clock input mode.!!
PA1 - [Clock input mode] Accepts a 5V input clock signal as basis for the output tempo. Leave
disconnected if not needed. Ignored in tap input mode.!!
PA2 - Sync input switch. [Tap input mode] Tap once to realign the output clock signal. [Clock
input mode] If the input clock signal is defined as full-speed (via PA5 pin option), tap to extend the
current output clock pulse by 50%. Leave disconnected if not needed.!!
PA3 - [Tap input mode] Enable manual adjustments (via PA6/PA7 pins). Pull low to enable,
disconnect to disable. Ignored in clock input mode.!!
PA4 - Input selection. Pull low to activate clock input mode, disconnect to activate tap input
mode.!!
PA5 - [Clock input mode] Indicate input clock signal is full-speed. Pull low to enable, disconnect
to disable. Ignored in tap input mode.!!
PA6 - [Tap input mode] Manual adjustment voltage controlled analog input. Leave at AVCC/2 for
no adjustment; shift towards GND to decrease tempo, or shift towards AVCC to increase tempo.
Leave disconnected if not needed. Ignored in clock input mode.!!
PA7 - [Tap input mode] Manual adjustment range voltage controlled analog input. Control the
intensity of the manual adjustment input (PA6). Towards GND the adjustment input becomes fine
grained, and towards AVCC the adjustment input becomes very intense. Leave disconnected if not
using averaging, or use an internal trimpot to set a permanent default setting. Ignored in clock
input mode.!!
Selecting input mode
The chip needs some form of input to be able to produce an output clock signal at the desired
tempo/frequency (in the absence of any input or other modifying conditions the chip will boot up
outputting a 0.5Hz clock signal). There are two mutually exclusive alternatives; tap input mode or
clock input mode, both of which will be described in more details further down.!!
The PA4 pin controls which of the input modes are currently active. To activate clock input mode
this pin must be kept at ground potential, and to activate tap input mode the pin can be left
disconnected (where an internal pull-up resistor will raise it to VCC potential). This means the
input selection can be controlled by a basic SPST off-on switch, and it also implies that, should
you only be interested in the tap input mode this pin can be left entirely disconnected.!!
Tap input mode
This is the default mode and is based around the tap input switch pin (PA0). The tap input
switch pin should be connected to a single pole momentary/non-latching switch suitable for
stepping on, with the other side of this switch connected to ground.!

!
The pin uses debouncing logic to detect whenever a stable connection takes place, something like
10 milliseconds of solid connection to ground, which filters out most noise and switch bouncing.
The switch “tap” is registered on the downward edge, i.e. as the switch is pressed rather than
released, after which it can be safely released. In other words, it is only necessary to give the
switch a quick push each time it needs to be operated.!!
The first time a tap is registered the chip enters tempo counting state, at which point it starts
counting milliseconds waiting for a second tap to indicate the final tempo. If another tap is
registered within the maximum allowed timeframe (10 seconds) the new tempo is immediately
accepted and the output clock signal changed accordingly (not taking into account manual
adjustment modifiers, see below). If no second tap is registered within the maximum timeframe, or
the input mode is changed to clock input mode, the tempo counting state is abandoned and
the output clock signal is left unaffected.!!
The tap input LED indicator pin (PB2) is pulled and kept low as long as the chip is in the tempo
counting state (only works in tap input mode). This can be used to light a LED making it easy to
see whether the chip is actively counting tempo or not.!!
The sync input switch pin (PA2), should either be left disconnected if not needed, or, like the tap
input switch pin, be connected to a single pole momentary/non-latching switch. This switch works
in both input modes, but with slightly different results. In tap input mode this switch can be
stepped on once to instantly realign the output clock signal without entering the tempo counting
state (though it will abandon any tempo counting state that is already in progress) and without
affecting the tempo itself.!
Imagine a given tap tempo with such a small error as to be indistinguishable in a short timespan,
but that will have drifted a perceptible amount after a greater length of time. Instead of starting the
tempo input process from scratch, a single tap on this switch on the beat will bring the output
clock signal right back to where you want it.!!
TEMPO ADJUSTMENT FEATURE!
This feature is only available in tap input mode and is enabled by pulling and keeping the manual
adjustment enable pin (PA3) low. To disable, or if not needed, this pin can be left disconnected.
I.e. it’s a perfect candidate for an SPST off-on toggle switch.!!
When enabled two new pins come into play; the manual adjustment input pin (PA6) and the
manual adjustment range input pin (PA7). Both pins are voltage controlled analog inputs that
accepts a voltage somewhere between ground and AVCC.!!
Assuming that a linear potentiometer is connected to the manual adjustment input pin (PA6) the
neutral position is at AVCC/2 or 12 o’clock (keep in mind that most potentiometers have quite wide
tolerance). The closer this pin is pulled towards ground the more the output clock signal will be
slowed down. And the opposite direction, pulling the pin closer to AVCC, the output clock signal
will be increasingly sped up.!
Note that this does not affect the base tap tempo, and disabling this feature will result in the output
clock signal reverting to match the base tempo.!!
The manual adjustment range input pin (PA7) is a straight forward sensitivity control that
increases the intensity of the manual adjustment input as the pin is pulled from ground towards
AVCC (in approx. 10 distinct steps).!
At the lowest setting (pin at ground potential) the manual adjustment control (PA6) will be able to
modulate the output clock signal by approx. 128 milliseconds in either direction (slower/faster).!
At the highest setting (pin at AVCC potential) the manual adjustment control (PA6) will be able to
modulate the output clock signal by as much as 1.28 seconds in either direction (slower/faster).!!

If the manual adjustment input pin is going to be used alone the range pin should be
permanently set at the preferred setting, typically with an internal trimpot. If left disconnected it will
be pulled to AVCC by the internal pull-up resistor and consequently be at “full range”.!!
Now, using a potentiometer for the manual adjustment input is perfectly fine, but I imagine
feeding this pin some other form of control signal could be interesting too! (Maybe an envelope
signal or an LFO signal?) Make it switchable for maximum flexibility.!!
TAP-TEMPO INPUT AVERAGING FEATURE!
Typically as soon as a new input tempo is input the previous one is discarded, but enabling this
feature (only available in tap input mode) allows up to 10 tempo counts to be averaged for a,
hopefully, more accurate final tempo.!!
The feature is enabled by pulling and keeping the averaging enabled pin (PB6) low. To disable
the feature, or if it’s not needed, the pin is left disconnected.!!
When enabled the chip will start saving each new tempo up to a maximum of 10, whereupon the
oldest tempo will be overwritten etc. The output clock signal is set to the average (though this
tempo may still be affected by a manual tempo adjustment should that feature also be enabled).!!
To discard all currently stored tempos the feature need only be disabled for a brief moment (via
PB6).!!
Clock input mode
This mode is based on receiving and synchronizing against an external clock signal rather than
relying on the tap input switch. The clock signal is continually read from the input clock signal
pin (PA1) and the output clock signal is modulated accordingly.!!
In this mode the manual adjustment- and tempo averaging features are disabled. Since the chip
continually re-aligns with the incoming clock pulses trying to do something like extend the output
clock pulses will only result in the next clock pulse interrupting the previous one before it has time
to complete.!!
The chip natively runs on a “half-speed” clock frequency; more on that below, but it is worth noting
that this is the expected input clock signal by default.!!
If you want to synchronize based on a “full-speed” clock signal, say from a 3rd party unit, click
track etc., the “input clock signal is full-speed” feature should be enabled by pulling and keeping
the full-speed cock input pin (PA5) low. If running off a “half-speed” clock, or if this feature is not
needed at all, this pin is left disconnected.!!
When configured to accept a “full-speed“ clock signal the sync input switch pin (PA2) becomes
an option. Because a “full-speed“ input clock signal will result in a “half-speed” output clock
signal, there will be two input clock pulses for each one output clock pulse. A single tap on the
sync input switch will result in the next output clock pulse being extended by 50%, thereby
switching the output clock signal from aligning with one input clock pulse to aligning with the
other input clock pulse instead.!!!

Output clock signals
The chip outputs both a native “half-speed” clock signal (PB0) and a “full-speed” output signal
(PB1), where the full-speed signal is just a doubling of the half-speed one.!!
If driving other compatible chips, like the LFO v2, and probably other chips in the future, they will
be expecting the “half-speed” clock signal. Read more about the reason for this below.!!
But a “full-speed” signal is also included for passing a clock signal to 3rd party devices etc. that
probably expects a proper signal. Though do mind the amplitude (5V) and make sure the receiving
device can handle it.!!
There’s an interesting quirk here in the way a changing input clock frequency impacts the output
clock signals differently. Because the chip internally runs on “half-speed” frequencies, the
corresponding half-speed output signal is instantly matched, while the full-speed output signal
continues at the previous frequency until the new one has been fully established. The reason for
this will (hopefully) be evident after reading the next section.!!
Half-speed and full-speed clock signals
!
There’s been a lot of talk about half- and full-speed clock signals, but no explanation as to what it
really is, so let’s try to do something about that.!

Defining the tempo when running in tap input mode requires two taps; one to initiate a millisecond
counter, and one to stop the counting and set the tempo based on this count. The result is a clock
output signal of a given frequency relating to the input tempo, with it’s signal edges aligned in time
to the taps.!!
Now, let’s assume the output clock signal is “full-speed”; during one clock pulse both the falling-
and rising edge have to be transmitted, with the rising edge coming exactly half-way through the
complete pulse.!
Considering the arbitrary distance between a user’s “start”- and “stop” taps, there’s no way of
knowing ahead of time when we’ve reached the half-way point between these to inputs. This again

means we cannot propagate a new output clock signal until we know it’s frequency; i.e. the final
user defined tempo. The result is a propagation latency of one full clock cycle from when a user
inputs a tempo to the time a second chip receiving the output clock signal has adjusted to this
same tempo. The chip allows a clock signal of as much as 10 seconds between each pulse. No
good!!!
Now, let’s assume we want to output a “half-speed” signal. This time we consider the user’s
“start”- and “stop” taps as the falling- and rising edge of a corresponding output clock signal. As
soon as the first tap is registered, a falling edge is produced on the output clock signal, and
likewise, as soon as the second tap is registered, a corresponding rising edge is produced on the
output clock signal. We’ve just “mirrored” the user’s tap-tempo on the output clock signal in real-
time, though we’ve only really presented half the clock cycle. Now that the final tempo is known the
chip can “keep quiet” for the second half of the clock cycle, before starting over again with a falling
edge for the next output clock pulse. Etc.!!
As long as the receiving chip treats the clock signal this way as well (counting tempo between
falling- and rising edges), there’s no propagation latency at all. Theoretically n-number of chips can
be chained together, clock outputs to clock inputs, and a single user-input tap-tempo will instantly
set the new tempo on all chips. Much better!!!
And then really, the reason for doing it this way is because that’s how I chose to implement it in the
ATtiny85 LFO chip, not really considering clock signals or frequencies at all beyond a practical
level ;)!!
Harald

